

# Assessing Biosecurity Risks

Cecelia V. Williams PhD
International Biological Threat Reduction
Global Security Center
Sandia National Laboratories
Albuquerque, NM USA

**29 September 2010** 

www.biosecurity.sandia.gov







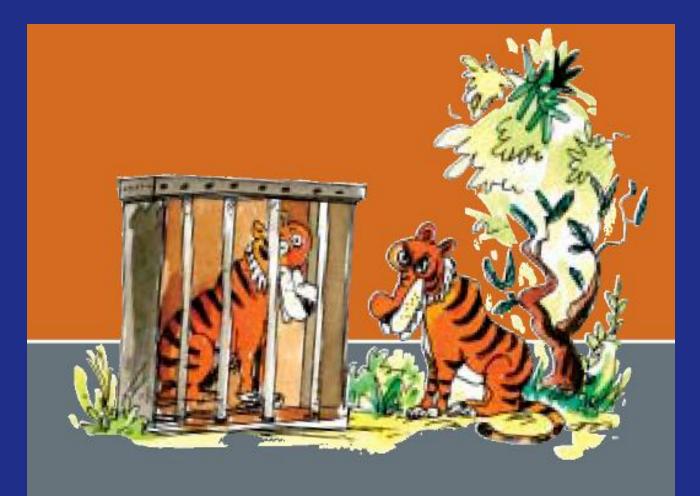
# Development of a Biosecurity Program

#### Primary Goal of a Biosecurity Program

- To prevent loss, theft, or misuse of microorganisms, biological materials, and research-related information.
- A vital factor in the development of an appropriate, applicable Biosecurity Program is Risk Assessment

#### Biosecurity Risk Assessment Components

- Evaluate the biological agents that exist at a facility
- Evaluate the facility processes and procedures
- Evaluate the biorisk mitigation measures that are in place
- Evaluate the potential adversaries of the facilities








### What is Risk?

Is a function of Likelihood and Consequences







### **Biorisk**

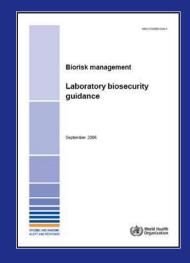
- "Biorisk is the combination of the probability of occurrence of harm and the severity of that harm where the source of harm is a biological toxin or agent"\*
  - The source may be an unintentional exposure, accidental release or loss, theft, misuse, diversion, unauthorized access, or intentional unauthorized release.
  - Biorisk is the integration of biosafety and biosecurity

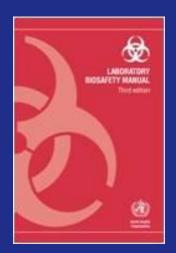




### **Focus on the Laboratory**

#### Laboratory Biosecurity


 A set of preventive measures designed to reduce the risk of intentional removal (theft) and misuse of a biological agent – intent to cause harm


#### Laboratory Biosafety

 Describes the containment principles, technologies, and practices that are implemented to prevent the unintentional exposure to pathogens and toxins, or their accidental release

#### Common stratgey

- Identification of preventive measures is determined by the RISK ASSESSMENT
- Biosecurity and biosafety should be integrated systems that avoid compromising necessary infectious disease research and diagnostics











# **Laboratory Biosecurity Risks**

#### Risk = f (Likelihood, Consequence)

#### Likelihood

 For security assessments, the likelihood of the adverse event, often referred to as the Threat Potential, includes the <u>Threat</u>, because it is a deliberate event

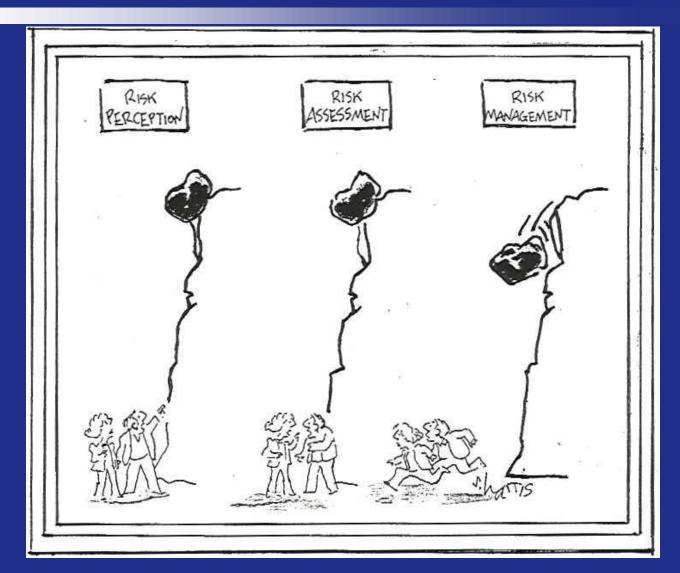

#### Consequences

 Of infection from accidental exposure or malicious release

#### Risks

- To laboratory workers
- Risk of accidental or deliberate exposure to community
- Risk of accidental or deliberate exposure to animal community





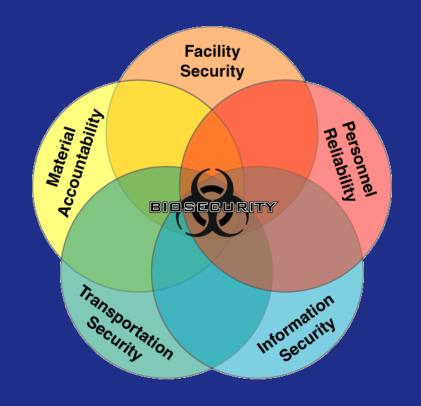







### **Risk Assessment: Understand the Risks**










# A Systems Approach to Biosecurity Risk Assessment

- Biosecurity system components
  - Physical security
  - Personnel security
  - Material handling and control measures
  - Transport security
  - Information security
  - Program management practices
- Each component is implemented based on results of risk assessment
- Biosecurity must mitigate risk for both
  - The insider
  - The outsider









# Laboratory Biosecurity Systems

**Final Design Evaluate** Design **Define System System** Requirements Redesign **System** Regulatory Requirements Physical Protection Systems Risk Assessment Detection Delay Response Target Identification **Facility Characteristics** Intrustion Detection Design Basis Threat Alarm Communication, Assessment and Display System Objectives Deny Access Control Contain Personnel Reliability Deter **Transport Security** 





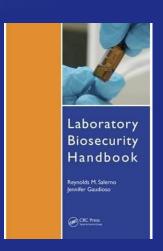


"...given the high level of know-how needed to use disease as a weapon to cause mass casualties, the United States should be less concerned that terrorists will become biologists and far more concerned that biologists will become terrorists."

#### -World At Risk,

The report of the commission on the prevention of weapons of mass destruction proliferation and terrorism, December 2008








# Biosecurity Risk Assessment Objectives

- Management is responsible for meeting all international, national, and local regulatory requirements
  - Biological Weapons Convention
  - UN Security Council Resolution 1540
  - National regulations
- Risk assessment allows management to decide against which scenarios to actively protect – establish a design basis threat
- Management determines security system strategy:
  - Deny: prevent adversary from gaining access to particular pathogen or toxin
  - Contain: prevent adversary from leaving facility while in possession of stolen pathogen or toxin
  - Deter: discourage adversary from stealing a particular pathogen or toxin by making theft of that agent appear very difficult









# **Risk Assessment Principles**

- Ideally the risk assessment is conducted with a standardized, systematic methodology
  - Results repeatable, comparable
- Define the problem (What is the question you are trying to answer)
- The risk assessment method used should be as simple as possible
  - Elaborate when needed
- Those conducting risk assessments should be explicit about uncertainties
- Risk assessment methods can incorporate one or more approaches





# **Biosecurity Risk Assessment**

#### 1. Characterize assets and threats

- a. Identify and evaluate assets (including pathogens and toxins)
- b. Evaluate adversaries who might target those assets



#### Evaluate scenarios

- a. Create scenarios consisting of "specific adversaries" attempting to target specific assets
- Determine how the various scenarios could be perpetrated (vulnerability assessment)



#### 3. Characterize the risk

- a. Evaluate threat potential and consequences of each scenario
- Determine acceptable and unacceptable risks; develop risk statement



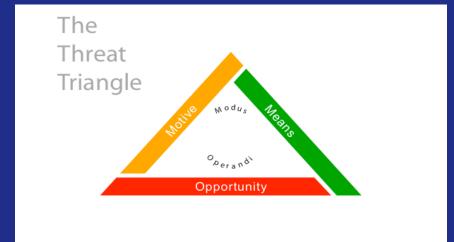






# **Assessing Threats**

#### Motive


• The reason for the crime. Motivations include ideological, personal, economic, and psychotic. Motivations give rise to a particular intent or objectives. They also impact behavior (e.g., passive or active, violent or nonviolent).

#### Means

• The tools used to commit the crime. Tools include: knowledge (general and specific); equipment (e.g., tools, weapons, explosives, transportation); and people (willing, coerced or unknowing). For an outsider – an insider can be a tool.

#### Opportunity

• The occasion that presents itself to allow a crime (e.g., theft or sabotage) to take place.









# Biosecurity Risk Assessment: Characterize the Biological Agents

- Assess value of the agents from an adversary's perspective
  - Consequences
    - To the Population
      - Transmissibility
      - Mortality
      - Morbidity
    - Economic
    - Psychological
  - Task Complexity
    - Acquisition
      - Natural
      - Laboratory
      - Synthetic biology
    - Production
      - R&D
      - Covert production
      - Ease of storage
    - Dissemination
      - Route of infection (e.g., aerosol, ingestion)
      - Environmental hardiness

REPORTS

Chemical Synthesis of Poliovirus cDNA: Generation of Infectious Virus in the Absence of Natural Template

Jeronimo Cello, Aniko V. Paul, Eckard Wimmer\*

9 AUGUST 2002 VOL 297 SCIENCE www.sciencemag.org

orman or Visonom, Feb. 2001, p. 1205-1210 022-530X:00:504-00-0. DOC 30-1220-PAT75-3-6285-1210-2001 Septingle C 2001, American Society for Minorbiology. All Rights Received. Vol. 25, No.

Expression of Mouse Interleukin-4 by a Recombinant Ectromelia Virus Suppresses Cytolytic Lymphocyte Responses and Overcomes Genetic Resistance to Mousepox

RONALD J. JACKSON, <sup>43</sup>\* ALISTAIR J. RAMSAY, <sup>3</sup>† CARENA D. CHRISTENSEN, <sup>3</sup> SANDRA BEATON, <sup>3</sup>DIANA F. HALL, <sup>3</sup>‡ And IAN A. RAMSHAW<sup>3</sup>

Pest Aximal Control Cooperative Research Course, CSIRO Sunsimible Econotions, 4 and Division of Immuniting and Cell Biology, John Cartin School of Medical Research, Assemblan National University, 2 Camberns, Assembla









# **Biosecurity Risk Assessment: Characterize the Adversaries**

#### Adversary Classes

- Terrorist
- Extremist
- Criminal

#### Insiders

- Authorized access to the facility, dangerous pathogens, and/or restricted information
- Distinguish Insiders by level of authorized access
  - Site
  - Building
  - Asset

#### Outsiders

No authorized access











### **Threats to Bioscience Facilities:**

#### **Insiders vs. Outsiders**

# Scenarios involving Insiders generally pose a higher risk than scenarios involving only Outsiders

#### **Insiders**

- Access to facility and buildings where biological agents are stored and used
- Can wait for an opportune time
- Have knowledge of facility operations and security system
- Some have relevant technical skills and know how to covertly remove the desired biological agent

#### **Outsiders**

- Most biological agents can be readily found elsewhere: other laboratories and in nature
- Do not have authorized access
- Have limited knowledge about facility operations and security
- Will not know exactly where the desired biological agent is stored
- Collusion with an Insider increases risk of detection

- Opportunity yes
- Means yes
- Motive ?



- Opportunity significantly less
- Means typically less
- Motive ?







# **Characterize the Facility**

- Identify "specific adversaries"
  - Operational Means
  - Opportunity
- Identify "specific assets"
  - Uniqueness of asset at facility
  - Location of asset
  - State of asset (e.g. in long-term storage, in active research, type of research, quantity, ...)
- Facility vulnerabilities











### Traditional Biorisk Assessment Method

- Typical risk assessment approaches use pure opinion to define the risk
  - Lacks ability to repeat
  - Can not be compared
  - Difficult to communicate

Laboratories often default to regulations to define biorisk practices







# Pure Quantitative Biosecurity Risk Assessment?

- In a quantitative scheme, the risk assessor assigns numerical values to the likelihood and consequences of the adverse event
  - All data in the model should be quantitative
- For laboratory biorisks, currently there is limited data to numerically define the probability of an infection, exposure, release, theft, or loss
- Likewise, there is limited data existing to quantify the consequences of disease







# Key things to think about regarding biorisks

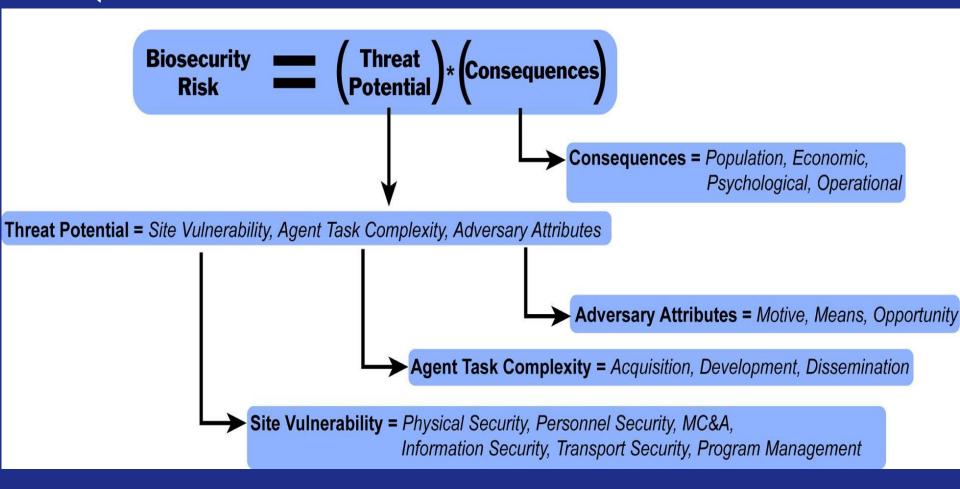
- Biorisk and scientific expert opinions are valuable
- The overall biorisk(s) for any process is made up of multiple factors
  - Agent factors like route of infection, impact of disease on a host, etc.
  - Laboratory factors like equipment in use, animals in use, in place biosafety practices, etc
  - Environmental factors like susceptible hosts, endemicity, etc.
  - Threats for intentional (biosecurity) risks
- Not all factors impact the risk in the same way







# One Biorisk Assessment Option


- Multiple criteria decision making has been widely accepted as a method to capture, compare, and aid in complex decision making processes
  - Multi-Attribute Utility Theory (MAUT) is one method that has been used for assessment of risks and assessing risk management options
- Criteria can be organized in terms of likelihood and consequence
  - And can be arranged in a hierarchy by relationships
- Criteria can be weighted to reflect the variance of impact
- Criteria can be defined using absolute values



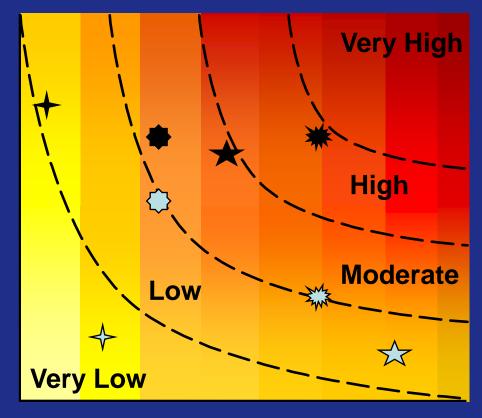




# Biosecurity Risk Variables in More Detail






Reference: <u>Laboratory Biosecurity Handbook</u>, by Reynolds M. Salerno, Jennifer Gaudioso CRC; 1 edition (June 20, 2007) ISBN-10: 0849364752





# Characterizing Scenarios by Risk: Hypothetical Results





Consequences

- Protect against unacceptable risk scenarios
- Develop incident response plans for acceptable risk scenarios







# Laboratory Biosecurity Risk Assessment Project (Biosecurity RAM)









# Are there other options?

- There are multiple risk assessment models and methods which can be used to conduct biosecurity risk assessments
- The key points for conducting a risk assessment are:
  - Risk is a function of both the likelihood and the consequences
  - Regulations or risk group definitions are not enough.
  - A risk assessment should be repeatable, comparable, and support risk management decision making
- The approach used should clearly answer the question
  - E.g. What is the risk of a laboratory acquired infection to someone working on this research project in my lab?
  - E.g. What is the risk of an environmental exposure from this research project?
  - E.g. What is the risk of theft of this valuable biological material from my laboratory?







# **Biosecurity Risk Assessment**

- Enables the professional (e.g. biosafety officer, responsible official) to:
  - Become familiar with the proposed work activities (procedures, equipment, personnel)
  - Be a knowledgeable and credible partner with the investigator to develop a safe and secure environment for the work.
  - Support biosecurity risk management decisions
  - Establish appropriate mitigation measures commensurate with the identified biosecurity risks





# Strengthening Biological Risk Management



#### Vision for Integrated BioRisk Management:

- Increased focus on "awareness" to change current culture
- Clarify terminology
- Development of targeted "training strategies"
- Securing "commitment" from key stakeholders, including government officials, who must be on board
- Continue increasing "capacity" based on Regional/Country needs and establish accountability through development of Country "report cards"







# **Questions?**

Cecelia V. Williams, PhD

**Key USG sponsors:** 

**Sandia National Laboratories** PO Box 5800, MS 1363 Albuquerque, NM 87185-1363 USA













cvwilli@sandia.gov











www.biosecurity.sandia.gov



